1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/fe310/thread_arch.c

212 lines
6.0 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017, 2019 Ken Rabold, JP Bonn
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_fe310
* @{
*
* @file cpu.c
* @brief Implementation of the CPU thread management for SiFive FE310
*
* @author Ken Rabold
* @}
*/
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include "irq.h"
#include "thread.h"
#include "sched.h"
#include "context_frame.h"
#include "vendor/platform.h"
/**
* @brief Noticeable marker marking the beginning of a stack segment
*
* This marker is used e.g. by *thread_start_threading* to identify the
* stacks beginning.
*/
#define STACK_MARKER (0x77777777)
/**
* @brief Initialize a thread's stack
*
* RIOT saves the tasks registers on the stack, not in the task control
* block. thread_stack_init() is responsible for allocating space for
* the registers on the stack and adjusting the stack pointer to account for
* the saved registers.
*
* The stack_start parameter is the bottom of the stack (low address). The
* return value is the top of stack: stack_start + stack_size - space reserved
* for thread context save - space reserved to align stack.
*
* thread_stack_init is called for each thread.
*
* RISCV ABI is here: https://github.com/riscv/riscv-elf-psabi-doc
* From ABI:
* The stack grows downwards and the stack pointer shall be aligned to a
* 128-bit boundary upon procedure entry, except for the RV32E ABI, where it
* need only be aligned to 32 bits. In the standard ABI, the stack pointer
* must remain aligned throughout procedure execution. Non-standard ABI code
* must realign the stack pointer prior to invoking standard ABI procedures.
* The operating system must realign the stack pointer prior to invoking a
* signal handler; hence, POSIX signal handlers need not realign the stack
* pointer. In systems that service interrupts using the interruptee's stack,
* the interrupt service routine must realign the stack pointer if linked
* with any code that uses a non-standard stack-alignment discipline, but
* need not realign the stack pointer if all code adheres to the standard ABI.
*
* @param[in] task_func pointer to the thread's code
* @param[in] arg argument to task_func
* @param[in] stack_start pointer to the start address of the thread
* @param[in] stack_size the maximum size of the stack
*
* @return pointer to the new top of the stack (128bit aligned)
*
*/
char *thread_stack_init(thread_task_func_t task_func,
void *arg,
void *stack_start,
int stack_size)
{
struct context_switch_frame *sf;
uint32_t *stk_top;
/* calculate the top of the stack */
stk_top = (uint32_t *)((uintptr_t)stack_start + stack_size);
/* Put a marker at the top of the stack. This is used by
* thread_stack_print to determine where to stop dumping the
* stack.
*/
stk_top--;
*stk_top = STACK_MARKER;
/* per ABI align stack pointer to 16 byte boundary. */
2020-11-18 09:58:52 +01:00
stk_top = (uint32_t *)(((uintptr_t)stk_top) & ~((uintptr_t)0xf));
/* reserve space for the stack frame. */
2020-11-18 09:58:52 +01:00
stk_top = (uint32_t *)((uintptr_t)stk_top - sizeof(*sf));
/* populate the stack frame with default values for starting the thread. */
sf = (struct context_switch_frame *) stk_top;
/* Clear stack frame */
memset(sf, 0, sizeof(*sf));
/* set initial reg values */
sf->pc = (uint32_t) task_func;
sf->a0 = (uint32_t) arg;
/* if the thread exits go to sched_task_exit() */
sf->ra = (uint32_t) sched_task_exit;
return (char *) stk_top;
}
void thread_print_stack(void)
{
int count = 0;
thread_t *active_thread = thread_get_active();
if (!active_thread) {
return;
}
2020-11-18 09:58:52 +01:00
/* thread_init aligns stack pointer to 16 byte boundary, the cast below
* is therefore safe. Use intermediate cast to uintptr_t to silence
* -Wcast-align */
uint32_t *sp = (uint32_t *)(uintptr_t)active_thread->sp;
printf("printing the current stack of thread %" PRIkernel_pid "\n",
thread_getpid());
#ifdef DEVELHELP
printf("thread name: %s\n", active_thread->name);
printf("stack start: 0x%08x\n", (unsigned)(active_thread->stack_start));
printf("stack end : 0x%08x\n",
(unsigned)(active_thread->stack_start + active_thread->stack_size));
#endif
printf(" address: data:\n");
do {
printf(" 0x%08x: 0x%08x\n", (unsigned)sp, (unsigned)*sp);
sp++;
count++;
} while (*sp != STACK_MARKER);
printf("current stack size: %i words\n", count);
}
int thread_isr_stack_usage(void)
{
return 0;
}
void *thread_isr_stack_pointer(void)
{
return NULL;
}
void *thread_isr_stack_start(void)
{
return NULL;
}
/**
* @brief Call context switching at thread exit
*
* This is called is two situations: 1) after the initial main and idle threads
* have been created and 2) when a thread exits.
*
*/
void cpu_switch_context_exit(void)
{
/* enable interrupts */
irq_enable();
/* force a context switch to another thread */
thread_yield_higher();
UNREACHABLE();
}
static inline void _ecall_dispatch(uint32_t num, void *ctx)
{
/* function arguments are in a0 and a1 as per ABI */
__asm__ volatile (
"mv a0, %[num] \n"
"mv a1, %[ctx] \n"
"ECALL\n"
: /* No outputs */
: [num] "r" (num), [ctx] "r" (ctx)
: "memory"
);
}
void thread_yield_higher(void)
{
_ecall_dispatch(0, NULL);
}
/**
* @brief Print heap statistics
*/
void heap_stats(void)
{
extern char _sheap; /* defined in linker script */
extern char _eheap; /* defined in linker script */
long int heap_size = &_eheap - &_sheap;
struct mallinfo minfo = mallinfo();
printf("heap: %ld (used %u, free %ld) [bytes]\n",
heap_size, minfo.uordblks, heap_size - minfo.uordblks);
}