1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32l1/periph/i2c.c

581 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 FU Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @addtogroup driver_periph
* @{
*
* @file
* @brief Low-level I2C driver implementation
*
* @note This implementation only implements the 7-bit addressing mode.
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
*
* @}
*/
#include <stdint.h>
#include "cpu.h"
2015-01-19 12:16:07 +01:00
#include "mutex.h"
#include "periph/i2c.h"
#include "periph_conf.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/* guard file in case no I2C device is defined */
#if I2C_NUMOF
/* static function definitions */
static void _i2c_init(I2C_TypeDef *i2c, int ccr);
static void _toggle_pins(GPIO_TypeDef *port, int pin_scl, int pin_sda);
static void _pin_config(GPIO_TypeDef *port, int pin_scl, int pin_sda);
static void _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag);
static inline void _clear_addr(I2C_TypeDef *dev);
static inline void _write(I2C_TypeDef *dev, char *data, int length);
static inline void _stop(I2C_TypeDef *dev);
2015-01-19 12:16:07 +01:00
/**
* @brief Array holding one pre-initialized mutex for each I2C device
*/
static mutex_t locks[] = {
#if I2C_0_EN
[I2C_0] = MUTEX_INIT,
#endif
#if I2C_1_EN
[I2C_1] = MUTEX_INIT,
#endif
#if I2C_2_EN
[I2C_2] = MUTEX_INIT
#endif
#if I2C_3_EN
[I2C_3] = MUTEX_INIT
#endif
};
int i2c_init_master(i2c_t dev, i2c_speed_t speed)
{
I2C_TypeDef *i2c;
GPIO_TypeDef *port;
int pin_scl = 0, pin_sda = 0;
int ccr;
/* read speed configuration */
switch (speed) {
case I2C_SPEED_NORMAL:
ccr = I2C_APBCLK / 200000;
break;
case I2C_SPEED_FAST:
ccr = I2C_APBCLK / 800000;
break;
default:
return -2;
}
/* read static device configuration */
switch (dev) {
#if I2C_0_EN
case I2C_0:
i2c = I2C_0_DEV;
port = I2C_0_PORT;
pin_scl = I2C_0_SCL_PIN;
pin_sda = I2C_0_SDA_PIN;
I2C_0_CLKEN();
I2C_0_PORT_CLKEN();
NVIC_SetPriority(I2C_0_ERR_IRQ, I2C_IRQ_PRIO);
NVIC_EnableIRQ(I2C_0_ERR_IRQ);
break;
#endif
default:
return -1;
}
/* configure pins */
_pin_config(port, pin_scl, pin_sda);
/* configure device */
_i2c_init(i2c, ccr);
/* make sure the analog filters don't hang -> see errata sheet 2.14.7 */
if (i2c->SR2 & I2C_SR2_BUSY) {
DEBUG("LINE BUSY AFTER RESET -> toggle pins now\n");
/* disable peripheral */
i2c->CR1 &= ~I2C_CR1_PE;
/* toggle both pins to reset analog filter */
_toggle_pins(port, pin_scl, pin_sda);
/* reset pins for alternate function */
_pin_config(port, pin_scl, pin_sda);
/* make peripheral soft reset */
i2c->CR1 |= I2C_CR1_SWRST;
i2c->CR1 &= ~I2C_CR1_SWRST;
/* enable device */
_i2c_init(i2c, ccr);
}
return 0;
}
static void _i2c_init(I2C_TypeDef *i2c, int ccr)
{
/* disable device and set ACK bit */
i2c->CR1 = I2C_CR1_ACK;
/* configure I2C clock */
i2c->CR2 = (I2C_APBCLK / 1000000) | I2C_CR2_ITERREN;
i2c->CCR = ccr;
i2c->TRISE = (I2C_APBCLK / 1000000) + 1;
/* configure device */
i2c->OAR1 = 0; /* makes sure we are in 7-bit address mode */
/* enable device */
i2c->CR1 |= I2C_CR1_PE;
}
static void _pin_config(GPIO_TypeDef *port, int pin_scl, int pin_sda)
{
/* Set GPIOs to AF mode */
port->MODER &= ~(3 << (2 * pin_scl));
port->MODER |= (2 << (2 * pin_scl));
port->MODER &= ~(3 << (2 * pin_sda));
port->MODER |= (2 << (2 * pin_sda));
/* Set speed high*/
port->OSPEEDR |= (3 << (2 * pin_scl));
port->OSPEEDR |= (3 << (2 * pin_sda));
/* Set to push-pull configuration open drain*/
port->OTYPER |= (1 << pin_scl);
port->OTYPER |= (1 << pin_sda);
/* Enable pull-up resistors */
port->PUPDR &= ~(3 << (2 * pin_scl));
port->PUPDR |= (1 << (2 * pin_scl));
port->PUPDR &= ~(3 << (2 * pin_sda));
port->PUPDR |= (1 << (2 * pin_sda));
/* Configure GPIOs to for the I2C alternate function */
if (pin_scl < 8) {
port->AFR[0] &= ~(0xf << (4 * pin_scl));
port->AFR[0] |= (I2C_0_SCL_AF << (4 * pin_scl));
}
else {
port->AFR[1] &= ~(0xf << (4 * (pin_scl - 8)));
port->AFR[1] |= (I2C_0_SCL_AF << (4 * (pin_scl - 8)));
}
if (pin_sda < 8) {
port->AFR[0] &= ~(0xf << (4 * pin_sda));
port->AFR[0] |= (I2C_0_SDA_AF << (4 * pin_sda));
}
else {
port->AFR[1] &= ~(0xf << (4 * (pin_sda - 8)));
port->AFR[1] |= (I2C_0_SDA_AF << (4 * (pin_sda - 8)));
}
}
static void _toggle_pins(GPIO_TypeDef *port, int pin_scl, int pin_sda)
{
/* Set GPIOs to General purpose output mode mode */
port->MODER &= ~(3 << (2 * pin_scl));
port->MODER |= (1 << (2 * pin_scl));
port->MODER &= ~(3 << (2 * pin_sda));
port->MODER |= (1 << (2 * pin_sda));
/* Set speed high*/
port->OSPEEDR |= (3 << (2 * pin_scl));
port->OSPEEDR |= (3 << (2 * pin_sda));
/* Set to push-pull configuration open drain*/
port->OTYPER |= (1 << pin_scl);
port->OTYPER |= (1 << pin_sda);
/* set both to high */
port->ODR |= (1 << pin_scl);
port->ODR |= (1 << pin_sda);
/* set SDA to low */
port->ODR &= ~(1 << pin_sda);
/* set SCL to low */
port->ODR &= ~(1 << pin_scl);
/* set SCL to high */
port->ODR |= (1 << pin_scl);
/* set SDA to high */
port->ODR |= (1 << pin_sda);
}
int i2c_init_slave(i2c_t dev, uint8_t address)
{
/* TODO: implement slave mode */
return -1;
}
2015-01-19 12:16:07 +01:00
int i2c_acquire(i2c_t dev)
{
if (dev >= I2C_NUMOF) {
return -1;
}
mutex_lock(&locks[dev]);
return 0;
}
int i2c_release(i2c_t dev)
{
if (dev >= I2C_NUMOF) {
return -1;
}
mutex_unlock(&locks[dev]);
return 0;
}
int i2c_read_byte(i2c_t dev, uint8_t address, char *data)
{
return i2c_read_bytes(dev, address, data, 1);
}
int i2c_read_bytes(i2c_t dev, uint8_t address, char *data, int length)
{
unsigned int state;
int i = 0;
I2C_TypeDef *i2c;
switch (dev) {
#if I2C_0_EN
case I2C_0:
i2c = I2C_0_DEV;
break;
#endif
default:
return -1;
}
switch (length) {
case 1:
DEBUG("Send Slave address and wait for ADDR == 1\n");
_start(i2c, address, I2C_FLAG_READ);
DEBUG("Set ACK = 0\n");
i2c->CR1 &= ~(I2C_CR1_ACK);
DEBUG("Clear ADDR and set STOP = 1\n");
state = disableIRQ();
_clear_addr(i2c);
i2c->CR1 |= (I2C_CR1_STOP);
restoreIRQ(state);
DEBUG("Wait for RXNE == 1\n");
while (!(i2c->SR1 & I2C_SR1_RXNE));
DEBUG("Read received data\n");
*data = (char)i2c->DR;
/* wait until STOP is cleared by hardware */
while (i2c->CR1 & I2C_CR1_STOP);
/* reset ACK to be able to receive new data */
i2c->CR1 |= (I2C_CR1_ACK);
break;
case 2:
DEBUG("Send Slave address and wait for ADDR == 1\n");
_start(i2c, address, I2C_FLAG_READ);
DEBUG("Set POS bit\n");
i2c->CR1 |= (I2C_CR1_POS | I2C_CR1_ACK);
DEBUG("Crit block: Clear ADDR bit and clear ACK flag\n");
state = disableIRQ();
_clear_addr(i2c);
i2c->CR1 &= ~(I2C_CR1_ACK);
restoreIRQ(state);
DEBUG("Wait for transfer to be completed\n");
while (!(i2c->SR1 & I2C_SR1_BTF));
DEBUG("Crit block: set STOP and read first byte\n");
state = disableIRQ();
i2c->CR1 |= (I2C_CR1_STOP);
data[0] = (char)i2c->DR;
restoreIRQ(state);
DEBUG("read second byte\n");
data[1] = (char)i2c->DR;
DEBUG("wait for STOP bit to be cleared again\n");
while (i2c->CR1 & I2C_CR1_STOP);
DEBUG("reset POS = 0 and ACK = 1\n");
i2c->CR1 &= ~(I2C_CR1_POS);
i2c->CR1 |= (I2C_CR1_ACK);
break;
default:
DEBUG("Send Slave address and wait for ADDR == 1\n");
_start(i2c, address, I2C_FLAG_READ);
_clear_addr(i2c);
while (i < (length - 3)) {
DEBUG("Wait until byte was received\n");
while (!(i2c->SR1 & I2C_SR1_RXNE));
DEBUG("Copy byte from DR\n");
data[i++] = (char)i2c->DR;
}
DEBUG("Reading the last 3 bytes, waiting for BTF flag\n");
while (!(i2c->SR1 & I2C_SR1_BTF));
DEBUG("Disable ACK\n");
i2c->CR1 &= ~(I2C_CR1_ACK);
DEBUG("Crit block: set STOP and read N-2 byte\n");
state = disableIRQ();
data[i++] = (char)i2c->DR;
i2c->CR1 |= (I2C_CR1_STOP);
restoreIRQ(state);
DEBUG("Read N-1 byte\n");
data[i++] = (char)i2c->DR;
while (!(i2c->SR1 & I2C_SR1_RXNE));
DEBUG("Read last byte\n");
data[i++] = (char)i2c->DR;
DEBUG("wait for STOP bit to be cleared again\n");
while (i2c->CR1 & I2C_CR1_STOP);
DEBUG("reset POS = 0 and ACK = 1\n");
i2c->CR1 &= ~(I2C_CR1_POS);
i2c->CR1 |= (I2C_CR1_ACK);
}
return length;
}
int i2c_read_reg(i2c_t dev, uint8_t address, uint8_t reg, char *data)
{
return i2c_read_regs(dev, address, reg, data, 1);
}
int i2c_read_regs(i2c_t dev, uint8_t address, uint8_t reg, char *data, int length)
{
I2C_TypeDef *i2c;
switch (dev) {
#if I2C_0_EN
case I2C_0:
i2c = I2C_0_DEV;
break;
#endif
default:
return -1;
}
/* send start condition and slave address */
DEBUG("Send slave address and clear ADDR flag\n");
_start(i2c, address, I2C_FLAG_WRITE);
_clear_addr(i2c);
DEBUG("Write reg into DR\n");
i2c->DR = reg;
_stop(i2c);
DEBUG("Now start a read transaction\n");
return i2c_read_bytes(dev, address, data, length);
}
int i2c_write_byte(i2c_t dev, uint8_t address, char data)
{
return i2c_write_bytes(dev, address, &data, 1);
}
int i2c_write_bytes(i2c_t dev, uint8_t address, char *data, int length)
{
I2C_TypeDef *i2c;
switch (dev) {
#if I2C_0_EN
case I2C_0:
i2c = I2C_0_DEV;
break;
#endif
default:
return -1;
}
/* start transmission and send slave address */
DEBUG("sending start sequence\n");
_start(i2c, address, I2C_FLAG_WRITE);
_clear_addr(i2c);
/* send out data bytes */
_write(i2c, data, length);
/* end transmission */
DEBUG("Ending transmission\n");
_stop(i2c);
DEBUG("STOP condition was send out\n");
return length;
}
int i2c_write_reg(i2c_t dev, uint8_t address, uint8_t reg, char data)
{
return i2c_write_regs(dev, address, reg, &data, 1);
}
int i2c_write_regs(i2c_t dev, uint8_t address, uint8_t reg, char *data, int length)
{
I2C_TypeDef *i2c;
switch (dev) {
#if I2C_0_EN
case I2C_0:
i2c = I2C_0_DEV;
break;
#endif
default:
return -1;
}
/* start transmission and send slave address */
_start(i2c, address, I2C_FLAG_WRITE);
_clear_addr(i2c);
/* send register address and wait for complete transfer to be finished*/
_write(i2c, (char *)(&reg), 1);
/* write data to register */
_write(i2c, data, length);
/* finish transfer */
_stop(i2c);
/* return number of bytes send */
return length;
}
void i2c_poweron(i2c_t dev)
{
switch (dev) {
#if I2C_0_EN
case I2C_0:
I2C_0_CLKEN();
break;
#endif
}
}
void i2c_poweroff(i2c_t dev)
{
switch (dev) {
#if I2C_0_EN
case I2C_0:
while (I2C_0_DEV->SR2 & I2C_SR2_BUSY);
I2C_0_CLKDIS();
break;
#endif
}
}
static void _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag)
{
/* wait for device to be ready */
DEBUG("Wait for device to be ready\n");
while (dev->SR2 & I2C_SR2_BUSY);
/* generate start condition */
DEBUG("Generate start condition\n");
dev->CR1 |= I2C_CR1_START;
DEBUG("Wait for SB flag to be set\n");
while (!(dev->SR1 & I2C_SR1_SB));
/* send address and read/write flag */
DEBUG("Send address\n");
dev->DR = (address << 1) | rw_flag;
/* clear ADDR flag by reading first SR1 and then SR2 */
DEBUG("Wait for ADDR flag to be set\n");
while (!(dev->SR1 & I2C_SR1_ADDR));
}
static inline void _clear_addr(I2C_TypeDef *dev)
{
dev->SR1;
dev->SR2;
DEBUG("Cleared address\n");
}
static inline void _write(I2C_TypeDef *dev, char *data, int length)
{
DEBUG("Looping through bytes\n");
for (int i = 0; i < length; i++) {
/* write data to data register */
dev->DR = (uint8_t)data[i];
DEBUG("Written %i byte to data reg, now waiting for DR to be empty again\n", i);
/* wait for transfer to finish */
while (!(dev->SR1 & I2C_SR1_TXE));
DEBUG("DR is now empty again\n");
}
}
static inline void _stop(I2C_TypeDef *dev)
{
/* make sure last byte was send */
DEBUG("Wait if last byte hasn't been sent\n");
while (!(dev->SR1 & I2C_SR1_BTF));
/* send STOP condition */
dev->CR1 |= I2C_CR1_STOP;
}
#if I2C_0_EN
void I2C_0_ERR_ISR(void)
{
unsigned state = I2C_0_DEV->SR1;
DEBUG("\n\n### I2C ERROR OCCURED ###\n");
DEBUG("status: %08x\n", state);
if (state & I2C_SR1_OVR) {
DEBUG("OVR\n");
}
if (state & I2C_SR1_AF) {
DEBUG("AF\n");
}
if (state & I2C_SR1_ARLO) {
DEBUG("ARLO\n");
}
if (state & I2C_SR1_BERR) {
DEBUG("BERR\n");
}
if (state & I2C_SR1_PECERR) {
DEBUG("PECERR\n");
}
if (state & I2C_SR1_TIMEOUT) {
DEBUG("TIMEOUT\n");
}
if (state & I2C_SR1_SMBALERT) {
DEBUG("SMBALERT\n");
}
while (1);
}
#endif /* I2C_0_EN */
#endif /* I2C_NUMOF */