1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/sys/frac/frac.c

159 lines
4.0 KiB
C
Raw Normal View History

2018-09-04 15:13:44 +02:00
/**
* Copyright (C) 2018 Eistec AB
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
* @ingroup sys_frac
* @{
* @file
* @brief Integer fraction function implementations
*
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*
* @}
*/
#include <stdint.h>
#include <stdio.h>
#include "assert.h"
#include "frac.h"
#include "bitarithm.h"
2018-09-04 15:13:44 +02:00
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief compute greatest common divisor of @p u and @p v
*
* @param[in] u first operand
* @param[in] v second operand
*
* @return Greatest common divisor of @p u and @p v
*/
static uint32_t gcd32(uint32_t u, uint32_t v)
{
/* Source: https://en.wikipedia.org/wiki/Binary_GCD_algorithm#Iterative_version_in_C */
unsigned shift;
/* GCD(0,v) == v; GCD(u,0) == u, GCD(0,0) == 0 */
if (u == 0) {
return v;
}
if (v == 0) {
return u;
}
/* Let shift := log2 K, where K is the greatest power of 2
* dividing both u and v. */
for (shift = 0; ((u | v) & 1) == 0; ++shift) {
u >>= 1;
v >>= 1;
}
/* remove all factors of 2 in u */
while ((u & 1) == 0) {
u >>= 1;
}
/* From here on, u is always odd. */
do {
/* remove all factors of 2 in v -- they are not common */
/* note: v is not zero, so while will terminate */
while ((v & 1) == 0) {
v >>= 1;
}
/* Now u and v are both odd. Swap if necessary so u <= v,
* then set v = v - u (which is even). */
if (u > v) {
/* Swap u and v */
uint32_t t = v;
v = u;
u = t;
}
v = v - u; /* Here v >= u */
} while (v != 0);
/* restore common factors of 2 */
return u << shift;
}
uint32_t frac_long_divide(uint32_t num, uint32_t den, int *prec, uint32_t *rem)
{
/* Binary long division with adaptive number of fractional bits */
/* The result will be a Qx.y number where x is the number of bits in the
* integer part and y = 64 - x. Similar to floating point, except the result
* is unsigned, and we can only represent numbers in the range 2**-32..(2**32 - 1) */
assert(den); /* divide by zero */
uint32_t q = 0; /* Quotient */
uint64_t r = 0; /* Remainder */
if (prec) {
*prec = 0;
}
if (num == 0) {
if (rem) {
*rem = 0;
}
return 0;
}
unsigned p = bitarithm_msb(num);
int i_bits = p + 1; /* Number of integer bits in the result */
uint32_t num_mask = (1ul << p);
for (unsigned k = 0; k < (64u + p); ++k) {
r <<= 1;
q <<= 1;
if (num & num_mask) {
r |= 1;
}
num_mask >>= 1;
if (r >= den) {
r -= den;
q |= 1;
}
if (q == 0) {
--i_bits;
}
if (q & (1ul << 31u)) {
/* result register is full */
break;
}
if ((r == 0) && (num == 0)) {
/* divides evenly */
break;
}
}
if (r > 0) {
++q;
}
if (prec) {
*prec = i_bits;
}
if (rem) {
*rem = r;
}
return q;
}
void frac_init(frac_t *frac, uint32_t num, uint32_t den)
{
DEBUG("frac_init32(%p, %" PRIu32 ", %" PRIu32 ")\n", (const void *)frac, num, den);
assert(den);
/* Reduce the fraction to shortest possible form by dividing by the greatest
* common divisor */
uint32_t gcd = gcd32(num, den);
/* Divide den and num by their greatest common divisor */
den /= gcd;
num /= gcd;
int prec = 0;
uint32_t rem = 0;
frac->frac = frac_long_divide(num, den, &prec, &rem);
frac->shift = (sizeof(frac->frac) * 8) - prec;
DEBUG("frac_init32: gcd = %" PRIu32 " num = %" PRIu32 " den = %" PRIu32 " frac = 0x%08" PRIx32 " shift = %02d, rem = 0x%08" PRIx32 "\n",
gcd, num, den, frac->frac, frac->shift, rem);
}