1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/x86/x86_memory.c

492 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 René Kijewski <rene.kijewski@fu-berlin.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @ingroup x86
* @{
*
* @file
* @brief Virtual memory management.
*
* @author René Kijewski <rene.kijewski@fu-berlin.de>
*
* @}
*/
#include "x86_kernel_memory.h"
#include "x86_interrupts.h"
#include "x86_memory.h"
#include "x86_registers.h"
#include "cpu.h"
#include "irq.h"
#include "tlsf-malloc.h"
#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
/* Compare Figure 44 (p. 99) of "Intel® Quark SoC X1000 Core Developers Manual" */
#define PT_CR3_BITS (0)
#define PT_PDPT_BITS (PT_P)
#define PT_PD_BITS (PT_P | PT_RW | PT_US)
#ifndef DEBUG_READ_BEFORE_WRITE
# define PT_HEAP_BITS (PT_P | PT_RW | PT_US | pt_xd)
#else
# define PT_HEAP_BITS (PT_HEAP_BIT | PT_RW | PT_US | pt_xd)
#endif
static uint64_t pt_xd = PT_XD;
typedef union page {
char content[4096];
uint64_t next_page;
uint64_t indices[512];
} __attribute__((aligned(0x1000))) page_t;
static volatile page_t TEMP_PAGE;
#define TEMP_PAGE_PT (((uintptr_t) &TEMP_PAGE / 0x1000) / 512)
#define TEMP_PAGE_PTE (((uintptr_t) &TEMP_PAGE / 0x1000) % 512)
void x86_init_gdt(void)
{
static const struct gdt_entry gdt_entries[3] = {
[0x0000 / 8] = {
.limit_0_15 = 0,
.base_0_15 = 0,
.base_16_23 = 0,
.access_byte = 0,
.limit_16_19_and_flags = 0,
.base_24_31 = 0,
},
[0x0008 / 8] = {
.limit_0_15 = 0xFFFF,
.base_0_15 = 0,
.base_16_23 = 0,
.access_byte = GDT_AB_EX | GDT_AB_S | GDT_AB_RING_0 | GDT_AB_PR,
.limit_16_19_and_flags = 0xF | GDT_FLAG_SZ | GDT_FLAG_GR,
.base_24_31 = 0,
},
[0x0010 / 8] = {
.limit_0_15 = 0xFFFF,
.base_0_15 = 0,
.base_16_23 = 0,
.access_byte = GDT_AB_RW | GDT_AB_S | GDT_AB_RING_0 | GDT_AB_PR,
.limit_16_19_and_flags = 0xF | GDT_FLAG_SZ | GDT_FLAG_GR,
.base_24_31 = 0,
},
};
static const struct gdtr_t gdt = {
.size_minus_one = sizeof gdt_entries - 1,
.offset = (unsigned long) &gdt_entries[0],
};
asm volatile ("" :: "a"(0x0010));
asm volatile ("lgdt %0" :: "m"(gdt));
asm volatile ("ljmp $0x0008, $1f\n"
"1:");
asm volatile ("mov %ax, %ds");
asm volatile ("mov %ax, %es");
asm volatile ("mov %ax, %fs");
asm volatile ("mov %ax, %gs");
asm volatile ("mov %ax, %ss");
}
/* Addresses in PDPT, PD, and PT are linear addresses. */
/* TEMP_PAGE is used to to access these pages. */
static pae_page_table_t static_pts[X86_NUM_STATIC_PT];
static pae_page_directory_t static_pds[X86_NUM_STATIC_PD];
static pae_page_directory_pointer_table_t pdpt;
static void init_elf_static_section(uint64_t bits, void *start_, void *end_)
{
unsigned long start = ((unsigned long) start_) / 0x1000;
unsigned long end = (((unsigned long) end_) + 0x1000 - 1) / 0x1000;
for (unsigned i = start; i < end; ++i) {
unsigned pt_num = i / 512;
unsigned pte_num = i % 512;
static_pts[pt_num][pte_num] = (i * 0x1000) | PT_P | PT_G | bits;
}
}
static void check_requirements(void)
{
uint64_t cpuid = cpuid_caps();
if ((cpuid & CPUID_PAE) == 0) {
puts("Your CPU does not support PAE! Halting.");
x86_hlt();
}
if ((cpuid & CPUID_PGE) == 0) {
puts("Your CPU does not support PGE! Halting.");
x86_hlt();
}
if ((cpuid & CPUID_MSR) == 0) {
puts("Warning: Your CPU does not support MSR!\n"
" Setting PT_XD = 0.");
pt_xd = 0;
}
else {
/* enable NX bit (if possible) */
uint64_t efer = msr_read(MSR_EFER);
efer |= EFER_NXE;
msr_set(MSR_EFER, efer);
if (!(msr_read(MSR_EFER) & EFER_NXE)) {
puts("Warning: Your hardware does not support the NX bit!\n"
" Setting PT_XD = 0.");
pt_xd = 0;
}
}
}
static void init_pagetable(void)
{
/* identity map tables */
for (unsigned i = 0; i < X86_NUM_STATIC_PD; ++i) {
pdpt[i] = ((uintptr_t) &static_pds[i]) | PT_PDPT_BITS;
}
for (unsigned i = 0; i < X86_NUM_STATIC_PT; ++i) {
unsigned pd_num = i / 512;
unsigned pt_num = i % 512;
static_pds[pd_num][pt_num] = ((uintptr_t) &static_pts[i]) | PT_PD_BITS;
}
init_elf_static_section(PT_RW | pt_xd, (void *) 0, (void *) 0x100000);
init_elf_static_section(PT_US, &_section_text_start, &_section_text_end);
init_elf_static_section(PT_US | pt_xd, &_section_rodata_start, &_section_rodata_end);
init_elf_static_section(PT_US | PT_RW | pt_xd, &_section_data_start, &_section_bss_end);
/* activate PAE */
/* FIXME: add x86_init_cr4() */
uint32_t cr4 = cr4_read();
cr4 |= CR4_PAE | CR4_MCE | CR4_PGE | CR4_PCE | CR4_OSXMMEXCPT;
cr4 &= ~(CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_PSE | CR4_OSFXSR | CR4_SMEP);
cr4_write(cr4);
/* load page table */
cr3_write((uint32_t) &pdpt | PT_CR3_BITS);
/* activate paging */
uint32_t cr0 = cr0_read();
cr0 |= CR0_PE | CR0_NE | CR0_WP | CR0_PG;
cr0 &= ~(CR0_MP | CR0_EM | CR0_TS | CR0_AM | CR0_NW | CR0_CD);
cr0_write(cr0);
}
static void set_temp_page(uint64_t addr)
{
static_pts[TEMP_PAGE_PT][TEMP_PAGE_PTE] = addr != -1ull ? addr | PT_P | PT_RW | pt_xd : 0;
asm volatile ("invlpg (%0)" :: "r"(&TEMP_PAGE));
}
static inline uint64_t min64(uint64_t a, uint64_t b)
{
return a <= b ? a : b;
}
static inline uint64_t max64(uint64_t a, uint64_t b)
{
return a >= b ? a : b;
}
static uint32_t init_free_pages_heap_position = (uintptr_t) &_heap_start;
static uint64_t init_free_pages_sub(uint64_t table, uint64_t bits, unsigned index, uint64_t *start, uint64_t *pos)
{
set_temp_page(table);
if (TEMP_PAGE.indices[index] & PT_P) {
return TEMP_PAGE.indices[index] & PT_ADDR_MASK;
}
TEMP_PAGE.indices[index] = *start | bits;
uint64_t result = *start;
*start += 0x1000;
*pos = max64(*start, *pos);
init_free_pages_heap_position += 0x1000;
return result;
}
static bool add_pages_to_pool(uint64_t start, uint64_t end)
{
start += 0xFFF;
start &= ~0xFFF;
end &= ~0xFFF;
start = max64(start, (uintptr_t) &_kernel_memory_end);
uint64_t pos = start;
uint32_t addr = init_free_pages_heap_position >> 12;
unsigned pte_i = addr % 512;
addr >>= 9;
unsigned pt_i = addr % 512;
addr >>= 9;
unsigned pd_i = addr;
if (pd_i >= 4) {
return false;
}
while (pos < end) {
uint64_t table = (uintptr_t) &pdpt;
table = init_free_pages_sub(table, PT_PDPT_BITS, pd_i, &start, &pos);
if (pos >= end) {
break;
}
table = init_free_pages_sub(table, PT_PD_BITS, pt_i, &start, &pos);
if (pos >= end) {
break;
}
set_temp_page(table);
TEMP_PAGE.indices[pte_i] = pos | PT_HEAP_BITS;
pos += 0x1000;
if (++pte_i >= 512) {
pte_i = 0;
if (++pt_i >= 512) {
pt_i = 0;
if (++pd_i >= 4) {
break;
}
}
}
}
if (start < end) {
cr3_write((uint32_t) &pdpt | PT_CR3_BITS); /* flush tlb */
tlsf_add_pool((void *) init_free_pages_heap_position, end - start);
init_free_pages_heap_position += end - start;
}
return true;
}
static void init_free_pages(void)
{
printf("Kernel memory: %p - %p\r\n", &_kernel_memory_start, &_kernel_memory_end);
printf(" .text: %p - %p\r\n", &_section_text_start, &_section_text_end);
printf(" .rodata: %p - %p\r\n", &_section_rodata_start, &_section_rodata_end);
printf(" .data: %p - %p\r\n", &_section_data_start, &_section_data_end);
printf(" .bss: %p - %p\r\n", &_section_bss_start, &_section_bss_end);
printf("Unmapped memory: %p - %p\r\n", &_kernel_memory_end, &_heap_start);
printf("Heap start: %p\r\n", &_heap_start);
unsigned long cnt = 0;
uint64_t start, len;
while (x86_get_memory_region(&start, &len, &cnt)) {
uint64_t end = start + len;
if (!add_pages_to_pool(start, end)) {
break;
}
}
unsigned long free_pages_count = (init_free_pages_heap_position - (uintptr_t) &_heap_start) / 4096;
float mem_amount = free_pages_count * (4096 / 1024);
const char *mem_unit = "kB";
if (mem_amount >= 2 * 1024) {
mem_amount /= 1024;
mem_unit = "MB";
}
if (mem_amount >= 2 * 1024) {
mem_amount /= 1024;
mem_unit = "GB";
}
printf("There are %lu free pages (%.3f %s) available for the heap.\n", free_pages_count, mem_amount, mem_unit);
}
static unsigned handling_pf;
static void pagefault_handler(uint8_t intr_num, struct x86_pushad *orig_ctx, unsigned long error_code)
{
(void) intr_num; /* intr_num == X86_INT_PF */
++handling_pf;
switch (handling_pf) {
case 1:
break; /* first #PF */
case 2: /* pagefault while handing a page fault. */
puts("A page fault occured while handling a page fault!");
x86_print_registers(orig_ctx, error_code);
puts("Halting.");
/* fall through */
default: /* pagefault while printing #PF message, everything is lost */
x86_hlt();
}
#ifdef DEBUG_READ_BEFORE_WRITE
uint32_t virtual_addr = cr2_read();
uint64_t pte = x86_get_pte(virtual_addr);
#endif
if (error_code & PF_EC_I) {
puts("Page fault while fetching instruction.");
x86_print_registers(orig_ctx, error_code);
puts("Halting.");
x86_hlt();
}
#ifdef DEBUG_READ_BEFORE_WRITE
else if ((pte != NO_PTE) && !(pte & PT_P) && (pte & PT_HEAP_BIT)) {
/* mark as present */
TEMP_PAGE.indices[(virtual_addr >> 12) % 512] |= PT_P;
asm volatile ("invlpg (%0)" :: "r"(virtual_addr));
/* initialize for easier debugging */
uint32_t *p = (uint32_t *) (virtual_addr & ~0xfff);
for (unsigned i = 0; i < 0x1000 / 4; ++i) {
const union {
char str_value[4];
uint32_t int_value;
} debug_init = { .str_value = "RIOT" };
*p++ = debug_init.int_value;
}
/* print a warning if the page was read before written */
if (!(error_code & PF_EC_W)) {
unsigned long *sp = (void *) orig_ctx->sp; /* ip, cs, flags */
2014-07-25 08:17:06 +02:00
printf("DEBUG: Read before write on heap address 0x%08x (physical: 0x%016llx) at 0x%08lx.\n",
virtual_addr, pte & PT_ADDR_MASK, sp[0]);
}
}
#endif
else if (error_code & PF_EC_P) {
printf("Page fault: access violation while %s present page.\n", (error_code & PF_EC_W) ? "writing to" : "reading from");
x86_print_registers(orig_ctx, error_code);
puts("Halting.");
x86_hlt();
}
else {
printf("Page fault: access violation while %s non-present page.\n", (error_code & PF_EC_W) ? "writing to" : "reading from");
x86_print_registers(orig_ctx, error_code);
puts("Halting.");
x86_hlt();
}
--handling_pf;
}
static void init_pagefault_handler(void)
{
x86_interrupt_handler_set(X86_INT_PF, &pagefault_handler);
}
void x86_init_memory(void)
{
check_requirements();
init_pagetable();
init_pagefault_handler();
init_free_pages();
puts("Virtual memory initialized");
}
uint64_t x86_get_pte(uint32_t addr)
{
addr >>= 12;
unsigned pte_i = addr % 512;
addr >>= 9;
unsigned pt_i = addr % 512;
addr >>= 9;
unsigned pd_i = addr;
if (pdpt[pd_i] & PT_P) {
set_temp_page(pdpt[pd_i] & PT_ADDR_MASK);
if (TEMP_PAGE.indices[pt_i] & PT_P) {
set_temp_page(TEMP_PAGE.indices[pt_i] & PT_ADDR_MASK);
return TEMP_PAGE.indices[pte_i];
}
}
return NO_PTE;
}
static void virtual_pages_set_bits(uint32_t virtual_addr, unsigned pages, uint64_t bits)
{
while (pages-- > 0) {
unsigned pte_i = (virtual_addr >> 12) % 512;
uint64_t old_physical_addr = x86_get_pte(virtual_addr) & PT_ADDR_MASK;
TEMP_PAGE.indices[pte_i] = old_physical_addr | bits;
asm volatile ("invlpg (%0)" :: "r"(virtual_addr));
virtual_addr += 0x1000;
}
}
void *x86_map_physical_pages(uint64_t physical_start, unsigned pages, uint64_t bits)
{
if (bits & PT_XD) {
bits &= ~PT_XD;
bits |= pt_xd;
}
/* We use an already set up space, so we are sure that the upper level page tables are allocated. */
/* We cut out a slice and re-add the physical pages. */
char *result = memalign(0x1000, pages * 0x1000);
if (!result) {
return NULL;
}
for (unsigned page = 0; page < pages; ++page) {
uint64_t physical_addr = physical_start + page * 0x1000;
uint32_t virtual_addr = (uintptr_t) result + page * 0x1000;
unsigned pte_i = (virtual_addr >> 12) % 512;
uint64_t old_pte = x86_get_pte(virtual_addr);
TEMP_PAGE.indices[pte_i] = physical_addr | bits;
if (page == 0) {
uint64_t old_physical_addr = old_pte & PT_ADDR_MASK;
/* FIXME: does this work? Won't work if TLSF joins different buffers. */
add_pages_to_pool(old_physical_addr, old_physical_addr + 0x1000 * pages);
}
}
cr3_write((uint32_t) &pdpt | PT_CR3_BITS); /* flush tlb */
return result;
}
void *x86_get_virtual_pages(unsigned pages, uint64_t bits)
{
if (bits & PT_XD) {
bits &= ~PT_XD;
bits |= pt_xd;
}
char *result = memalign(0x1000, pages * 0x1000);
if (!result) {
return (void *) -1ul;
}
virtual_pages_set_bits((uintptr_t) result, pages, bits);
return result;
}
void x86_release_virtual_pages(uint32_t virtual_start, unsigned pages)
{
virtual_pages_set_bits(virtual_start, pages, PT_HEAP_BITS);
free((void *) virtual_start);
}