mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-15 21:52:46 +01:00
118 lines
3.7 KiB
Python
118 lines
3.7 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import os
|
||
|
|
||
|
# imports for array-handling
|
||
|
import numpy as np
|
||
|
|
||
|
import tensorflow as tf
|
||
|
|
||
|
# keras imports for the dataset and building our neural network
|
||
|
from tensorflow.keras.datasets import mnist
|
||
|
from tensorflow.keras.models import Sequential
|
||
|
from tensorflow.keras.layers import Dense, Dropout
|
||
|
|
||
|
|
||
|
# let's keep our keras backend tensorflow quiet
|
||
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||
|
|
||
|
# load mnist dataset
|
||
|
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
||
|
|
||
|
# building the input vector from the 28x28 pixels
|
||
|
X_train = X_train.reshape(60000, 784)
|
||
|
X_test = X_test.reshape(10000, 784)
|
||
|
X_train = X_train.astype('float32')
|
||
|
X_test = X_test.astype('float32')
|
||
|
|
||
|
# Split the train set in a train + validation set
|
||
|
X_valid = X_train[50000:]
|
||
|
y_valid = y_train[50000:]
|
||
|
X_train = X_train[:50000]
|
||
|
y_train = y_train[:50000]
|
||
|
|
||
|
# Normalize the data
|
||
|
X_train = X_train / 255.0
|
||
|
X_test = X_test / 255.0
|
||
|
X_valid = X_valid / 255.0
|
||
|
|
||
|
# building a very simple linear stack of layers using a sequential model
|
||
|
model = Sequential([
|
||
|
Dense(64, activation='relu', input_shape=(784,)),
|
||
|
Dropout(0.2),
|
||
|
Dense(10, activation='softmax')
|
||
|
])
|
||
|
|
||
|
# compiling the sequential model
|
||
|
model.compile(loss='sparse_categorical_crossentropy', metrics=['accuracy'],
|
||
|
optimizer='adam')
|
||
|
|
||
|
batch_size = 32
|
||
|
epochs = 30
|
||
|
|
||
|
# training the model and saving metrics in history
|
||
|
history = model.fit(X_train, y_train,
|
||
|
batch_size=batch_size, epochs=epochs,
|
||
|
verbose=2,
|
||
|
validation_data=(X_valid, y_valid))
|
||
|
|
||
|
# saving the model
|
||
|
# Convert the model to the TensorFlow Lite format without quantization
|
||
|
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
||
|
tflite_model = converter.convert()
|
||
|
|
||
|
# Save the basic model to disk
|
||
|
open("model_basic.tflite", "wb").write(tflite_model)
|
||
|
|
||
|
# Convert the model to the TensorFlow Lite format with quantization
|
||
|
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
||
|
|
||
|
(mnist_train, _), (_, _) = mnist.load_data()
|
||
|
mnist_train = mnist_train.reshape(60000, 784)
|
||
|
mnist_train = mnist_train.astype('float32')
|
||
|
mnist_train = mnist_train / 255.0
|
||
|
mnist_ds = tf.data.Dataset.from_tensor_slices((mnist_train)).batch(1)
|
||
|
|
||
|
|
||
|
def representative_data_gen():
|
||
|
for input_value in mnist_ds.take(100):
|
||
|
yield [input_value]
|
||
|
|
||
|
|
||
|
converter.representative_dataset = representative_data_gen
|
||
|
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
|
||
|
tflite_model = converter.convert()
|
||
|
|
||
|
# # Save the quantized model to disk
|
||
|
open("model.tflite", "wb").write(tflite_model)
|
||
|
|
||
|
basic_model_size = os.path.getsize("model_basic.tflite")
|
||
|
print("Basic model is %d bytes" % basic_model_size)
|
||
|
quantized_model_size = os.path.getsize("model.tflite")
|
||
|
print("Quantized model is %d bytes" % quantized_model_size)
|
||
|
difference = basic_model_size - quantized_model_size
|
||
|
print("Difference is %d bytes" % difference)
|
||
|
|
||
|
# Now let's verify the model on a few input digits
|
||
|
# Instantiate an interpreter for the model
|
||
|
model_quantized_reloaded = tf.lite.Interpreter('model.tflite')
|
||
|
|
||
|
# Allocate memory for each model
|
||
|
model_quantized_reloaded.allocate_tensors()
|
||
|
|
||
|
# Get the input and output tensors so we can feed in values and get the results
|
||
|
model_quantized_input = model_quantized_reloaded.get_input_details()[0]["index"]
|
||
|
model_quantized_output = model_quantized_reloaded.get_output_details()[0]["index"]
|
||
|
|
||
|
# Create arrays to store the results
|
||
|
model_quantized_predictions = np.empty(X_test.size)
|
||
|
|
||
|
for i in range(10):
|
||
|
# Invoke the interpreter
|
||
|
model_quantized_reloaded.set_tensor(model_quantized_input, X_test[i:i+1, :])
|
||
|
model_quantized_reloaded.invoke()
|
||
|
model_quantized_prediction = model_quantized_reloaded.get_tensor(model_quantized_output)
|
||
|
|
||
|
print("Digit: {} - Prediction:\n{}".format(y_test[i], model_quantized_prediction))
|
||
|
print("")
|