1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/drivers/cc110x/include/cc110x_settings.h

171 lines
5.3 KiB
C
Raw Normal View History

drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
/*
* Copyright (C) 2018 Otto-von-Guericke-Universität Magdeburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_cc110x
* @{
*
* @file
* @brief Default settings of the TI CC1100/CC1101 transceiver
*
* @author Marian Buschsieweke <marian.buschsieweke@ovgu.de>
* @}
*/
#ifndef CC110X_SETTINGS_H
#define CC110X_SETTINGS_H
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief The size of the configuration array for CC110X in bytes
*/
#define CC110X_CONF_SIZE 41
/**
* @brief Length of the PATABLE
*/
#define CC110X_PATABLE_LEN 8
/**
* @brief Configuration register values for CC1100/CC1101 transceivers
*/
extern const char cc110x_conf[CC110X_CONF_SIZE];
/**
* @brief Magic numbers to write to the TEST2, TEST1 and TEST0 configuration
* registers
*
* Those registers are poorly documented. The data sheet refers to SmartRF
* Studio to obtain the correct magic numbers. Those values were identical
* for the 433MHz, 868MHz and 915MHz band at GFSK, 250kBaud and 127kHz
* deviation. Maybe by luck? So when adding a new base band or adjusting the
* transceiver configuration, those numbers should be checked again with the
* SmartRF Studio
*/
extern const char cc110x_magic_registers[3];
/**
* @name Configuration data that specify the 8 available output power levels
*
* Source: Table 39 in the data sheet on page 60.
*
* | Output Power [dBm] | Setting 433 MHz | Setting 868 MHz | Setting 915 MHz |
* |--------------------|-----------------|-----------------|-----------------|
* | -30 | 0x12 | 0x03 | 0x03 |
* | -20 | 0x0E | 0x0F | 0x0E |
* | -15 | 0x1D | 0x1E | 0x1E |
* | -10 | 0x34 | 0x27 | 0x27 |
* | 0 | 0x60 | 0x50 | 0x8E |
* | 5 | 0x84 | 0x81 | 0xCD |
* | 7 | 0xC8 | 0xCB | 0xC7 |
* | 10 | 0xC0 | 0xC2 | 0xC0 |
*
* @{
*/
/**
* @brief PATABLE values for the 433 MHz band
*
* Source: Table 39 in the data sheet on page 60.
*/
extern const cc110x_patable_t cc110x_patable_433mhz;
/**
* @brief PATABLE values for the 868 MHz band
*
* @note This is the default PATABLE. There is no need to upload this table
* unless switching between different PATABLEs is required.
*
* Source: Table 39 in the data sheet on page 60.
*/
extern const cc110x_patable_t cc110x_patable_868mhz;
/**
* @brief PATABLE values for the 915 MHz band
*
* Source: Table 39 in the data sheet on page 60.
*/
extern const cc110x_patable_t cc110x_patable_915mhz;
/** @} */
/**
* @name Channel mappings for CC110x transceivers
*
* @{
*/
/**
* @brief Channel map for 50 kHz channels with a distance of 200 kHz in the
* 433 MHz band
*
* This channel mapping assumes @ref cc110x_config_433mhz_38kbps_50khz is
* used as configuration. @ref cc110x_chanmap_433mhz_50khz_alt is an alternative
* channel map that does not overlap with this map. (This means devices with
* the alternative channel map cannot communicate with devices using this one,
* but also no interference is expected.)
*/
extern const cc110x_chanmap_t cc110x_chanmap_433mhz_50khz;
/**
* @brief Alternative channel map for 50 kHz channels with a distance of 200 kHz
* in the 433 MHz band
* @see cc110x_chanmap_433mhz_50khz
*
* This channel mapping assumes @ref cc110x_config_433mhz_38kbps_50khz is
* used as configuration.
*/
extern const cc110x_chanmap_t cc110x_chanmap_433mhz_50khz_alt;
/**
* @brief Channel map for 5 non-overlapping 300 kHz channels in the 433 MHz band
*
* This channel mapping assumes @ref cc110x_config_433mhz_250kbps_300khz is
* used as configuration. (Note: The distance between channels is in fact
* 350 kHz instead of 300. This increased distance allows to cover the full
* license free range and reduce the possibility of interference of adjacent
* channels. Reducing the distance to 300kHz would still allow only 5 channels.)
*/
extern const cc110x_chanmap_t cc110x_chanmap_433mhz_300khz;
/**
* @brief Channel map for LoRa 868MHz channels 10 to 17 (available as 0 to 7).
*
* This channel mapping assumes @ref cc110x_config_868mhz_250kbps_300khz is used
* as configuration.
*/
extern const cc110x_chanmap_t cc110x_chanmap_868mhz_lora;
/** @} */
/**
* @name Base frequency, channel bandwidth and data rate configurations for CC110x transceivers
*
* @{
*/
/**
* @brief CC110x configuration: 433MHz band, 38.4kbps data rate, 50 kHz channel
* width
*/
extern const cc110x_config_t cc110x_config_433mhz_38kbps_50khz;
/**
* @brief CC110x configuration: 433MHz band, 250kbps data rate, 300 kHz channel
* width
*/
extern const cc110x_config_t cc110x_config_433mhz_250kbps_300khz;
/**
* @brief CC110x configuration: 868MHz band, 250kbps data rate, 300 kHz channel
* width
*/
extern const cc110x_config_t cc110x_config_868mhz_250kbps_300khz;
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* CC110X_SETTINGS_H */
/** @} */