1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-17 00:32:44 +01:00
RIOT/cpu/nrf51/radio/nrfmin/nrfmin.c

728 lines
18 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_nrf51822_nrfmin
* @{
*
* @file
* @brief Implementation of the nrfmin NRF51822 minimal radio driver
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "thread.h"
#include "sched.h"
#include "periph_conf.h"
#include "periph/cpuid.h"
#include "nrfmin.h"
2015-08-10 02:41:08 +02:00
#include "net/gnrc.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Driver specific device configuration
* @{
*/
#define CONF_MODE RADIO_MODE_MODE_Nrf_2Mbit
#define CONF_PAYLOAD_LEN (250U)
#define CONF_LEN (8U)
#define CONF_S0 (0U)
#define CONF_S1 (0U)
#define CONF_STATLEN (0U)
#define CONF_BASE_ADDR_LEN (4U)
#define CONF_ENDIAN RADIO_PCNF1_ENDIAN_Big
#define CONF_WHITENING RADIO_PCNF1_WHITEEN_Disabled
#define CONF_CRC_LEN (2U)
#define CONF_CRC_POLY (0x11021)
#define CONF_CRC_INIT (0xf0f0f0)
/** @} */
/**
* @brief Driver specific address configuration
* @{
*/
#define CONF_ADDR_PREFIX0 (0xE7E7E7E7)
#define CONF_ADDR_BCAST (0xffff)
/** @} */
/**
* @brief Driver specific (interrupt) events (not all of them used currently)
* @{
*/
#define ISR_EVENT_RX_START (0x0001)
#define ISR_EVENT_RX_DONE (0x0002)
#define ISR_EVENT_TX_START (0x0004)
#define ISR_EVENT_TX_DONE (0x0008)
#define ISR_EVENT_WRONG_CHKSUM (0x0010)
/** @} */
/**
* @brief Payload types to use in driver specific framed format
*
* We expect the radio to carry either raw link layer data (UNDEF) or network
* layer data, so no need to map transport layer protocols etc...
* @{
*/
#define NRFTYPE_UNDEF (0x01)
#define NRFTYPE_SIXLOWPAN (0x02)
#define NRFTYPE_IPV6 (0x03)
#define NRFTYPE_ICMPV6 (0x04)
/**
* @}
*/
/**
* @brief Possible internal device states
*/
typedef enum {
STATE_OFF, /**< device is powered off */
STATE_IDLE, /**< device is in idle mode */
STATE_RX, /**< device is in receive mode */
STATE_TX, /**< device is transmitting data */
} state_t;
/**
* @brief In-memory structure of a nrfmin radio packet
*/
typedef struct __attribute__((packed)) {
uint8_t length; /**< packet length */
uint8_t src_addr[2]; /**< source address of the packet */
uint8_t dst_addr[2]; /**< destination address */
uint8_t proto; /**< protocol of payload */
uint8_t payload[CONF_PAYLOAD_LEN]; /**< actual payload */
} packet_t;
/**
* @brief Pointer to the MAC layer event callback
*/
static gnrc_netdev_t *_netdev = NULL;
/**
* @brief Current state of the device
*/
static volatile state_t _state = STATE_OFF;
/**
* @brief Address of the device
*/
static uint16_t _addr;
/**
* @brief Transmission buffer
*/
static packet_t _tx_buf;
/**
* @brief Hold the state before sending to return to it afterwards
*/
static state_t _tx_prestate;
/**
* @brief Double receive buffers
*/
static packet_t _rx_buf[2];
/**
* @brief Pointer to the free receive buffer
*/
static volatile int _rx_next = 0;
/*
* Create an internal mapping between NETTYPE and NRFTYPE
*/
static inline gnrc_nettype_t _nrftype_to_nettype(uint8_t nrftype)
{
switch (nrftype) {
#ifdef MODULE_GNRC_SIXLOWPAN
case NRFTYPE_SIXLOWPAN:
return GNRC_NETTYPE_SIXLOWPAN;
#endif
#ifdef MODULE_GNRC_IPV6
case NRFTYPE_IPV6:
return GNRC_NETTYPE_IPV6;
#endif
#ifdef MODULE_GNRC_ICMPV6
case NRFTYPE_ICMPV6:
return GNRC_NETTYPE_ICMPV6;
#endif
default:
return GNRC_NETTYPE_UNDEF;
}
}
static inline uint8_t _nettype_to_nrftype(gnrc_nettype_t nettype)
{
switch (nettype) {
#ifdef MODULE_GNRC_SIXLOWPAN
case GNRC_NETTYPE_SIXLOWPAN:
return NRFTYPE_SIXLOWPAN;
#endif
#ifdef MODULE_GNRC_IPV6
case GNRC_NETTYPE_IPV6:
return NRFTYPE_IPV6;
#endif
#ifdef MODULE_GNRC_ICMPV6
case GNRC_NETTYPE_ICMPV6:
return NRFTYPE_ICMPV6;
#endif
default:
return NRFTYPE_UNDEF;
}
}
/*
* Functions for controlling the radios state
*/
static void _switch_to_idle(void)
{
/* witch to idle state */
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0) {}
_state = STATE_IDLE;
}
static void _switch_to_rx(void)
{
/* set pointer to receive buffer */
NRF_RADIO->PACKETPTR = (uint32_t)&(_rx_buf[_rx_next]);
/* set address */
NRF_RADIO->BASE0 &= ~(0xffff);
NRF_RADIO->BASE0 |= _addr;
/* switch int RX mode */
NRF_RADIO->TASKS_RXEN = 1;
_state = STATE_RX;
}
/*
* Getter and Setter functions
*/
int _get_state(uint8_t *val, size_t max_len)
{
netopt_state_t state;
if (max_len < sizeof(netopt_state_t)) {
return -EOVERFLOW;
}
switch (_state) {
case STATE_OFF:
state = NETOPT_STATE_OFF;
break;
case STATE_IDLE:
state = NETOPT_STATE_SLEEP;
break;
case STATE_RX:
state = NETOPT_STATE_IDLE;
break;
case STATE_TX:
state = NETOPT_STATE_TX;
break;
default:
return -ECANCELED;
}
memcpy(val, &state, sizeof(netopt_state_t));
return sizeof(netopt_state_t);
}
int _set_state(uint8_t *val, size_t len)
{
netopt_state_t state;
if (len != sizeof(netopt_state_t)) {
return -EINVAL;
}
/* get target state */
memcpy(&state, val, len);
/* switch to target state */
switch (state) {
case NETOPT_STATE_SLEEP:
_switch_to_idle();
break;
case NETOPT_STATE_IDLE:
_switch_to_rx();
break;
default:
return -ENOTSUP;
}
return sizeof(netopt_state_t);
}
int _get_address(uint8_t *val, size_t max_len)
{
/* check parameters */
if (max_len < 2) {
return -EOVERFLOW;
}
/* get address */
val[0] = (uint8_t)(_addr >> 8);
val[1] = (uint8_t)(_addr);
return 2;
}
int _set_address(uint8_t *val, size_t len)
{
int is_rx = 0;
/* check parameters */
if (len != 2) {
return -EINVAL;
}
/* keep track of state */
while (_state == STATE_TX) {}
if (_state == STATE_RX) {
is_rx = 1;
_switch_to_idle();
}
/* set address */
_addr = (((uint16_t)val[0]) << 8) | val[1];
NRF_RADIO->BASE0 &= ~(0xffff);
NRF_RADIO->BASE0 |= _addr;
/* restore old state */
if (is_rx) {
_switch_to_rx();
}
return 2;
}
int _get_channel(uint8_t *val, size_t max_len)
{
/* check parameters */
if (max_len < 2) {
return -EOVERFLOW;
}
/* get channel */
val[0] = (0x3f & NRF_RADIO->FREQUENCY);
val[1] = 0;
return 2;
}
int _set_channel(uint8_t *val, size_t len)
{
int is_rx = 0;
/* check parameter */
if (len != 2 || val[0] > 0x3f) {
return -EINVAL;
}
/* remember state */
while (_state == STATE_TX) {}
if (_state == STATE_RX) {
is_rx = 1;
_switch_to_idle();
}
/* set channel */
NRF_RADIO->FREQUENCY = val[0];
/* restore state */
if (is_rx) {
_switch_to_rx();
}
return 2;
}
int _get_pan(uint8_t *val, size_t max_len)
{
/* check parameters */
if (max_len < 2) {
return -EOVERFLOW;
}
/* get PAN ID */
val[0] = (uint8_t)((NRF_RADIO->BASE0 & 0x00ff0000) >> 16);
val[1] = (uint8_t)((NRF_RADIO->BASE0 & 0xff000000) >> 24);
return 2;
}
int _set_pan(uint8_t *val, size_t len)
{
int is_rx = 0;
uint32_t pan;
/* check parameter */
if (len != 2) {
return -EINVAL;
}
/* remember state */
while (_state == STATE_TX) {}
if (_state == STATE_RX) {
is_rx = 1;
_switch_to_idle();
}
/* set new PAN ID */
pan = ((uint32_t)val[1] << 24) | ((uint32_t)val[0] << 16);
NRF_RADIO->BASE0 = pan | _addr;
NRF_RADIO->BASE1 = pan | CONF_ADDR_BCAST;
/* restore state */
if (is_rx) {
_switch_to_rx();
}
return 2;
}
int _get_txpower(uint8_t *val, size_t len)
{
/* check parameters */
if (len < 2) {
return 0;
}
/* get value */
val[0] = NRF_RADIO->TXPOWER;
if (val[0] & 0x80) {
val[1] = 0xff;
}
else {
val[1] = 0x00;
}
return 2;
}
int _set_txpower(uint8_t *val, size_t len)
{
int8_t power;
/* check parameters */
if (len < 2) {
return -EINVAL;
}
/* get TX power value */
power = (int8_t)val[0];
if (power > 2) {
power = 4;
}
else if (power > -2) {
power = 0;
}
else if (power > -6) {
power = -4;
}
else if (power > -10) {
power = -8;
}
else if (power > -14) {
power = -12;
}
else if (power > -18) {
power = -16;
}
else {
power = -20;
}
NRF_RADIO->TXPOWER = power;
return 2;
}
/*
* Radio interrupt routine
*/
void isr_radio(void)
{
msg_t msg;
if (NRF_RADIO->EVENTS_END == 1) {
NRF_RADIO->EVENTS_END = 0;
/* did we just send or receive something? */
if (_state == STATE_RX) {
/* drop packet on invalid CRC */
if (NRF_RADIO->CRCSTATUS != 1) {
return;
}
msg.type = GNRC_NETDEV_MSG_TYPE_EVENT;
msg.content.value = ISR_EVENT_RX_DONE;
msg_send_int(&msg, _netdev->mac_pid);
/* switch buffer */
_rx_next = _rx_next ^ 1;
NRF_RADIO->PACKETPTR = (uint32_t)&(_rx_buf[_rx_next]);
/* go back into receive mode */
NRF_RADIO->TASKS_START = 1;
}
else if (_state == STATE_TX) {
/* disable radio again */
_switch_to_idle();
/* if radio was receiving before, go back into RX state */
if (_tx_prestate == STATE_RX) {
_switch_to_rx();
}
}
}
if (sched_context_switch_request) {
thread_yield();
}
}
/*
* Event handlers
*/
static void _receive_data(void)
{
packet_t *data;
gnrc_pktsnip_t *pkt_head;
gnrc_pktsnip_t *pkt;
gnrc_netif_hdr_t *hdr;
gnrc_nettype_t nettype;
/* only read data if we have somewhere to send it to */
if (_netdev->event_cb == NULL) {
return;
}
/* get pointer to RX data buffer */
data = &(_rx_buf[_rx_next ^ 1]);
/* allocate and fill netif header */
pkt_head = gnrc_pktbuf_add(NULL, NULL, sizeof(gnrc_netif_hdr_t) + 4,
GNRC_NETTYPE_UNDEF);
if (pkt_head == NULL) {
DEBUG("nrfmin: Error allocating netif header on RX\n");
return;
}
hdr = (gnrc_netif_hdr_t *)pkt_head->data;
gnrc_netif_hdr_init(hdr, 2, 2);
hdr->if_pid = _netdev->mac_pid;
gnrc_netif_hdr_set_src_addr(hdr, data->src_addr, 2);
gnrc_netif_hdr_set_dst_addr(hdr, data->dst_addr, 2);
/* allocate and fill payload */
nettype = _nrftype_to_nettype(data->proto);
pkt = gnrc_pktbuf_add(pkt_head, data->payload, data->length - 6, nettype);
if (pkt == NULL) {
DEBUG("nrfmin: Error allocating packet payload on RX\n");
gnrc_pktbuf_release(pkt_head);
return;
}
/* pass on the received packet */
_netdev->event_cb(NETDEV_EVENT_RX_COMPLETE, pkt);
}
/*
* Public interface functions
*/
int nrfmin_init(gnrc_netdev_t *dev)
{
uint8_t cpuid[CPUID_LEN];
uint8_t tmp;
int i;
/* check given device descriptor */
if (dev == NULL) {
return -ENODEV;
}
/* set initial values */
dev->driver = &nrfmin_driver;
dev->event_cb = NULL;
dev->mac_pid = KERNEL_PID_UNDEF;
/* keep a pointer for future reference */
_netdev = dev;
/* power on the NRFs radio */
NRF_RADIO->POWER = 1;
/* load driver specific configuration */
NRF_RADIO->MODE = CONF_MODE;
/* configure variable parameters to default values */
NRF_RADIO->TXPOWER = NRFMIN_DEFAULT_TXPOWER;
NRF_RADIO->FREQUENCY = NRFMIN_DEFAULT_CHANNEL;
/* get default address from CPU ID */
cpuid_get(cpuid);
tmp = 0;
for (i = 0; i < (CPUID_LEN / 2); i++) {
tmp ^= cpuid[i];
}
_addr = ((uint16_t)tmp) << 8;
tmp = 0;
for (; i < CPUID_LEN; i++) {
tmp ^= cpuid[i];
}
_addr |= tmp;
/* pre-configure radio addresses */
NRF_RADIO->PREFIX0 = CONF_ADDR_PREFIX0;
NRF_RADIO->BASE0 = (NRFMIN_DEFAULT_PAN << 16) | _addr;
NRF_RADIO->BASE1 = (NRFMIN_DEFAULT_PAN << 16) | CONF_ADDR_BCAST;
NRF_RADIO->TXADDRESS = 0x00UL; /* always send from address 0 */
NRF_RADIO->RXADDRESSES = 0x03UL; /* listen to addresses 0 and 1 */
/* configure data fields and packet length whitening and endianess */
NRF_RADIO->PCNF0 = (CONF_S1 << RADIO_PCNF0_S1LEN_Pos) |
(CONF_S0 << RADIO_PCNF0_S0LEN_Pos) |
(CONF_LEN << RADIO_PCNF0_LFLEN_Pos);
NRF_RADIO->PCNF1 = (CONF_WHITENING << RADIO_PCNF1_WHITEEN_Pos) |
(CONF_ENDIAN << RADIO_PCNF1_ENDIAN_Pos) |
(CONF_BASE_ADDR_LEN << RADIO_PCNF1_BALEN_Pos) |
(CONF_STATLEN << RADIO_PCNF1_STATLEN_Pos) |
(CONF_PAYLOAD_LEN << RADIO_PCNF1_MAXLEN_Pos);
/* configure CRC unit */
NRF_RADIO->CRCCNF = CONF_CRC_LEN;
NRF_RADIO->CRCPOLY = CONF_CRC_POLY;
NRF_RADIO->CRCINIT = CONF_CRC_INIT;
/* set shortcuts for more efficient transfer */
NRF_RADIO->SHORTS = (1 << RADIO_SHORTS_READY_START_Pos);
/* enable interrupts */
NVIC_SetPriority(RADIO_IRQn, RADIO_IRQ_PRIO);
NVIC_EnableIRQ(RADIO_IRQn);
/* enable END interrupt */
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->INTENSET = (1 << RADIO_INTENSET_END_Pos);
/* put device in receive mode */
_switch_to_rx();
return 0;
}
int _send(gnrc_netdev_t *dev, gnrc_pktsnip_t *pkt)
{
(void)dev;
size_t size;
size_t pos = 0;
uint8_t *dst_addr;
gnrc_netif_hdr_t *hdr;
gnrc_pktsnip_t *payload;
/* check packet */
if (pkt == NULL || pkt->next == NULL) {
DEBUG("nrfmin: Error sending packet: packet incomplete\n");
return -ENOMSG;
}
/* check if payload is withing length bounds */
size = gnrc_pkt_len(pkt->next);
if (size > CONF_PAYLOAD_LEN) {
gnrc_pktbuf_release(pkt);
DEBUG("nrfmin: Error sending packet: payload to large\n");
return -EOVERFLOW;
}
/* get netif header and check address length */
hdr = (gnrc_netif_hdr_t *)pkt->data;
if (hdr->dst_l2addr_len != 2) {
DEBUG("nrfmin: Error sending packet: dest address has invalid size\n");
gnrc_pktbuf_release(pkt);
return -ENOMSG;
}
dst_addr = gnrc_netif_hdr_get_dst_addr(hdr);
DEBUG("nrfmin: Sending packet to %02x:%02x - size %u\n",
dst_addr[0], dst_addr[1], size);
/* wait for any ongoing transmission to finish */
while (_state == STATE_TX) {}
/* write data into TX buffer */
payload = pkt->next;
_tx_buf.length = 6 + size;
_tx_buf.src_addr[0] = (uint8_t)(_addr >> 8);
_tx_buf.src_addr[1] = (uint8_t)(_addr);
_tx_buf.dst_addr[0] = dst_addr[0];
_tx_buf.dst_addr[1] = dst_addr[1];
_tx_buf.proto = _nettype_to_nrftype(payload->type);
while (payload) {
memcpy(&(_tx_buf.payload[pos]), payload->data, payload->size);
pos += payload->size;
payload = payload->next;
}
/* save old state and switch to idle if applicable */
_tx_prestate = _state;
if (_tx_prestate == STATE_RX) {
_switch_to_idle();
}
/* set packet pointer to TX buffer and write destination address */
NRF_RADIO->PACKETPTR = (uint32_t)(&_tx_buf);
NRF_RADIO->BASE0 &= ~(0xffff);
NRF_RADIO->BASE0 |= ((((uint16_t)dst_addr[0]) << 8) | dst_addr[1]);
/* start transmission */
_state = STATE_TX;
NRF_RADIO->TASKS_TXEN = 1;
/* release packet */
gnrc_pktbuf_release(pkt);
return (int)size;
}
int _add_event_cb(gnrc_netdev_t *dev, gnrc_netdev_event_cb_t cb)
{
if (dev->event_cb != NULL) {
return -ENOBUFS;
}
dev->event_cb = cb;
return 0;
}
int _rem_event_cb(gnrc_netdev_t *dev, gnrc_netdev_event_cb_t cb)
{
if (dev->event_cb == cb) {
dev->event_cb = NULL;
return 0;
}
return -ENOENT;
}
int _get(gnrc_netdev_t *dev, netopt_t opt, void *value, size_t max_len)
{
(void)dev;
switch (opt) {
case NETOPT_ADDRESS:
return _get_address(value, max_len);
case NETOPT_CHANNEL:
return _get_channel(value, max_len);
case NETOPT_NID:
return _get_pan(value, max_len);
case NETOPT_TX_POWER:
return _get_txpower(value, max_len);
case NETOPT_STATE:
return _get_state(value, max_len);
default:
return -ENOTSUP;
}
}
int _set(gnrc_netdev_t *dev, netopt_t opt, void *value, size_t value_len)
{
(void)dev;
switch (opt) {
case NETOPT_ADDRESS:
return _set_address(value, value_len);
case NETOPT_CHANNEL:
return _set_channel(value, value_len);
case NETOPT_NID:
return _set_pan(value, value_len);
case NETOPT_TX_POWER:
return _set_txpower(value, value_len);
case NETOPT_STATE:
return _set_state(value, value_len);
default:
return -ENOTSUP;
}
}
void _isr_event(gnrc_netdev_t *dev, uint32_t event_type)
{
switch (event_type) {
case ISR_EVENT_RX_DONE:
_receive_data();
break;
default:
/* do nothing */
return;
}
}
/*
* Mapping of netdev interface
*/
const gnrc_netdev_driver_t nrfmin_driver = {
.send_data = _send,
.add_event_callback = _add_event_cb,
.rem_event_callback = _rem_event_cb,
.get = _get,
.set = _set,
.isr_event = _isr_event,
};
//