1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 01:12:44 +01:00
RIOT/tests/bench/xtimer_load/main.c

212 lines
6.4 KiB
C
Raw Normal View History

/*
* Copyright (C) 2019 Kaspar Schleiser <kaspar@schleiser.de>
* Copyright (C) 2019 Freie Universität Berlin
* Copyright (C) 2017 HAW Hamburg
* Copyright (C) 2015 Eistec AB
* 2013 INRIA
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup tests
* @{
*
* @file
* @brief bench_xtimer_load test application
*
* This is based on tests/xtimer_drift. It removes the lengthy printout of the
* worker thread and adds some stats keeping.
*
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Oliver Hahm <oliver.hahm@inria.fr>
* @author Christian Mehlis <mehlis@inf.fu-berlin.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Sebastian Meiling <s@mlng.net>
*
* @}
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "xtimer.h"
#include "thread.h"
#include "msg.h"
#include "log.h"
/* We generate some context switching and IPC traffic by using multiple threads
* and generate some xtimer load by scheduling several messages to be called at
* different times. TEST_HZ is the frequency of messages being sent from the
* main thread to the worker, all other message frequencies are derived from
* TEST_HZ.
* TEST_MSG_RX_USLEEP is a tiny sleep inside the message reception thread to
* cause extra context switches.
*/
#ifndef TEST_HZ
#define TEST_HZ (16LU)
#endif
#define TEST_INTERVAL (US_PER_SEC / TEST_HZ)
#define TEST_MSG_RX_USLEEP (200LU)
#define TEST_MSG_QUEUE_SIZE (4U)
#define TEST_TIME (10U)
static char slacker_stack1[THREAD_STACKSIZE_DEFAULT];
static char slacker_stack2[THREAD_STACKSIZE_DEFAULT];
static char worker_stack[THREAD_STACKSIZE_MAIN];
struct timer_msg {
xtimer_t timer;
uint32_t interval;
msg_t msg;
};
static struct timer_msg msg_a = { .interval = (TEST_INTERVAL / 2) };
static struct timer_msg msg_b = { .interval = (TEST_INTERVAL / 3) };
static struct timer_msg msg_c = { .interval = (TEST_INTERVAL * 5) };
static struct timer_msg msg_d = { .interval = (TEST_INTERVAL * 2) };
/* This thread is only here to give the kernel some extra load */
static void *slacker_thread(void *arg)
{
(void)arg;
LOG_DEBUG("run thread %" PRIkernel_pid "\n", thread_getpid());
/* we need a queue if a 2nd message arrives while the first is processed */
msg_t msgq[TEST_MSG_QUEUE_SIZE];
msg_init_queue(msgq, TEST_MSG_QUEUE_SIZE);
while (1) {
msg_t m;
msg_receive(&m);
struct timer_msg *tmsg = m.content.ptr;
xtimer_usleep(TEST_MSG_RX_USLEEP);
tmsg->msg.type = 12345;
tmsg->msg.content.ptr = tmsg;
xtimer_set_msg(&tmsg->timer, tmsg->interval, &tmsg->msg,
thread_getpid());
}
return NULL;
}
static volatile int32_t _min_drift, _max_drift, _min_jitter, _max_jitter;
static volatile int32_t _final_drift;
static volatile uint32_t _total_jitter, _samples;
/* This thread will print the drift to stdout once per second */
void *worker_thread(void *arg)
{
(void)arg;
/* Calculate interval based on possible precision when 'XTIMER_SHIFT > 0',
* to apply precision loss to expected interval length.
* test_interval != TEST_INTERVAL */
uint32_t test_interval =
xtimer_usec_from_ticks(xtimer_ticks_from_usec(TEST_INTERVAL));
uint32_t start = 0;
uint32_t last = 0;
uint32_t loop_counter = 0;
LOG_DEBUG("run thread %" PRIkernel_pid "\n", thread_getpid());
while (1) {
msg_t m;
msg_receive(&m);
uint32_t now = xtimer_now_usec();
if (start == 0) {
start = now;
last = start;
}
else if (loop_counter && (loop_counter % TEST_HZ) == 0) {
uint32_t expected = start + loop_counter * test_interval;
int32_t drift = now - expected;
expected = last + TEST_HZ * test_interval;
int32_t jitter = now - expected;
if (jitter < _min_jitter) {
_min_jitter = jitter;
}
if (jitter > _max_jitter) {
_max_jitter = jitter;
}
if (drift < _min_drift) {
_min_drift = drift;
}
if (drift > _max_drift) {
_max_drift = drift;
}
_final_drift = drift;
_total_jitter += labs(jitter);
_samples++;
last = now;
puts(".");
}
++loop_counter;
}
}
int main(void)
{
LOG_DEBUG("[INIT]\n");
msg_t m;
/* create and trigger first background thread */
kernel_pid_t pid1 = thread_create(slacker_stack1, sizeof(slacker_stack1),
THREAD_PRIORITY_MAIN - 1,
THREAD_CREATE_STACKTEST,
slacker_thread, NULL, "slacker1");
LOG_DEBUG("+ msg 1");
m.content.ptr = &msg_a;
msg_try_send(&m, pid1);
LOG_DEBUG("+ msg 2");
m.content.ptr = &msg_b;
msg_try_send(&m, pid1);
/* create and trigger second background thread */
kernel_pid_t pid2 = thread_create(slacker_stack2, sizeof(slacker_stack2),
THREAD_PRIORITY_MAIN - 1,
THREAD_CREATE_STACKTEST,
slacker_thread, NULL, "slacker2");
LOG_DEBUG("+ msg 3");
m.content.ptr = &msg_c;
msg_try_send(&m, pid2);
LOG_DEBUG("+ msg 4");
m.content.ptr = &msg_d;
msg_try_send(&m, pid2);
/* create and trigger worker thread */
kernel_pid_t pid3 = thread_create(worker_stack, sizeof(worker_stack),
THREAD_PRIORITY_MAIN - 2,
THREAD_CREATE_STACKTEST,
worker_thread, NULL, "worker");
printf("TEST_HZ=%lu\n", TEST_HZ);
puts("[START]");
uint32_t iterations = (TEST_TIME * TEST_HZ) + 1;
xtimer_ticks32_t last_wakeup = xtimer_now();
while (iterations--) {
xtimer_periodic_wakeup(&last_wakeup, TEST_INTERVAL);
msg_send(&m, pid3);
}
printf("drift: min=%" PRIi32 " max=%" PRIi32 " final=%" PRIi32 "\n",
_min_drift, _max_drift, _final_drift);
printf("jitter: min=%" PRIi32 " max=%" PRIi32 " abs avg=%" PRIi32 "\n",
_min_jitter, _max_jitter, _total_jitter / _samples);
puts("[DONE]");
}