1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32/periph/dma.c

631 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
2020-05-03 17:17:54 +02:00
* @ingroup cpu_stm32
* @{
*
* @file
* @brief Low-level DMA driver implementation
*
* @author Vincent Dupont <vincent@otakeys.com>
*
* @}
*/
#include <stdint.h>
#include "periph_cpu.h"
#include "periph_conf.h"
#include "mutex.h"
#include "assert.h"
#include "pm_layered.h"
#if CPU_FAM_STM32F3
#error "DMA is not supported on STM32F3"
#endif
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
#define STM32_DMA_Stream_Type DMA_Stream_TypeDef
#define CLOCK AHB1
#define PERIPH_ADDR PAR
#define MEM_ADDR M0AR
#define NDTR_REG NDTR
#define CONTROL_REG CR
#define RCC_MASK_DMA1 RCC_AHB1ENR_DMA1EN
#define RCC_MASK_DMA2 RCC_AHB1ENR_DMA2EN
#define DMA_STREAM_IT_MASK (DMA_LISR_FEIF0 | DMA_LISR_DMEIF0 | \
DMA_LISR_TEIF0 | DMA_LISR_HTIF0 | \
DMA_LISR_TCIF0)
#define DMA_EN DMA_SxCR_EN
#else /* CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7 */
#define STM32_DMA_Stream_Type DMA_Channel_TypeDef
#if CPU_FAM_STM32L4
#define CLOCK AHB1
#define RCC_MASK_DMA1 RCC_AHB1ENR_DMA1EN
#define RCC_MASK_DMA2 RCC_AHB1ENR_DMA2EN
#else /* CPU_FAM_STM32L4 */
#define CLOCK AHB
#if CPU_FAM_STM32F1 || CPU_FAM_STM32L1
#define RCC_MASK_DMA1 RCC_AHBENR_DMA1EN
#else /* CPU_FAM_STM32F1 || CPU_FAM_STM32L1 */
#define RCC_MASK_DMA1 RCC_AHBENR_DMAEN
#endif /* CPU_FAM_STM32F1 || CPU_FAM_STM32L1 */
#define RCC_MASK_DMA2 RCC_AHBENR_DMA2EN
#endif /* CPU_FAM_STM32L4 */
#define PERIPH_ADDR CPAR
#define MEM_ADDR CMAR
#define NDTR_REG CNDTR
#define CONTROL_REG CCR
#define DMA_EN DMA_CCR_EN
#define DMA_STREAM_IT_MASK (DMA_IFCR_CGIF1 | DMA_IFCR_CTCIF1 | \
DMA_IFCR_CHTIF1 | DMA_IFCR_CTEIF1)
#ifndef DMA_CCR_MSIZE_Pos
#define DMA_CCR_MSIZE_Pos (10)
#endif
#ifndef DMA_CCR_PSIZE_Pos
#define DMA_CCR_PSIZE_Pos (8)
#endif
#ifndef DMA_CCR_MINC_Pos
#define DMA_CCR_MINC_Pos (7)
#endif
#ifndef DMA_CCR_PINC_Pos
#define DMA_CCR_PINC_Pos (6)
#endif
#ifndef DMA_CCR_DIR_Pos
#define DMA_CCR_DIR_Pos (4)
#endif
#ifndef DMA_CCR_MEM2MEM_Pos
#define DMA_CCR_MEM2MEM_Pos (14)
#endif
#if defined(CPU_FAM_STM32F0) && !defined(DMA1_Channel4_5_6_7_IRQn)
#define DMA1_Channel4_5_6_7_IRQn DMA1_Channel4_5_IRQn
#endif
#endif /* CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7 */
struct dma_ctx {
STM32_DMA_Stream_Type *stream;
mutex_t conf_lock;
mutex_t sync_lock;
uint16_t len;
};
static struct dma_ctx dma_ctx[DMA_NUMOF];
/**
* @brief Get DMA base register
*
* For simplifying DMA stream handling, we map the DMA channels transparently to
* one integer number, such that DMA1 stream0 equals 0, DMA2 stream0 equals 8,
* DMA2 stream 7 equals 15 and so on.
*
* @param[in] stream physical DMA stream
*/
static inline DMA_TypeDef *dma_base(int stream)
{
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
return (stream < 8) ? DMA1 : DMA2;
#elif defined(DMA2)
return (stream < 7) ? DMA1 : DMA2;
#else
(void)stream;
return DMA1;
#endif
}
#ifdef CPU_FAM_STM32F0
static inline DMA_TypeDef *dma_req(int stream_n)
{
return dma_base(stream_n);
}
#elif CPU_FAM_STM32L0 || CPU_FAM_STM32L4
static inline DMA_Request_TypeDef *dma_req(int stream_n)
{
#ifdef DMA2
return (stream_n < 7) ? DMA1_CSELR : DMA2_CSELR;
#else
(void)stream_n;
return DMA1_CSELR;
#endif
}
#endif
/**
* @brief Get the DMA stream base address
*
* @param[in] stream physical DMA stream
*
* @return base address for the selected DMA stream
*/
static inline STM32_DMA_Stream_Type *dma_stream(int stream)
{
uint32_t base = (uint32_t)dma_base(stream);
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
return (DMA_Stream_TypeDef *)(base + (0x10 + (0x18 * (stream & 0x7))));
#else
return (DMA_Channel_TypeDef *)(base + (0x08 + (0x14 * (stream & 0x7))));
#endif
}
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
/**
* @brief Select high or low DMA interrupt register based on stream number
*
* @param[in] stream physical DMA stream
*
* @return 0 for streams 0-3, 1 for streams 3-7
*/
static inline int dma_hl(int stream)
{
return ((stream & 0x4) >> 2);
}
#endif
static IRQn_Type dma_get_irqn(int stream)
{
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
if (stream < 7) {
return ((IRQn_Type)((int)DMA1_Stream0_IRQn + stream));
}
else if (stream == 7) {
return DMA1_Stream7_IRQn;
}
else if (stream < 13) {
return ((IRQn_Type)((int)DMA2_Stream0_IRQn + (stream - 8)));
}
else if (stream < 16) {
return ((IRQn_Type)((int)DMA2_Stream5_IRQn + (stream - 13)));
}
#elif CPU_FAM_STM32F0 || CPU_FAM_STM32L0
if (stream == 0) {
return (DMA1_Channel1_IRQn);
}
else if (stream < 3 || (stream >= 8 && stream < 11)) {
return (DMA1_Channel2_3_IRQn);
}
else if (stream < 7 || stream >= 11) {
return (DMA1_Channel4_5_6_7_IRQn);
}
#else
if (stream < 7) {
return ((IRQn_Type)((int)DMA1_Channel1_IRQn + stream));
}
#if defined(CPU_FAM_STM32F1)
else if (stream < 11) {
#else
else if (stream < 13 ) {
#endif
return ((IRQn_Type)((int)DMA2_Channel1_IRQn + stream));
}
#if !defined(CPU_FAM_STM32L1)
else {
#if defined(CPU_FAM_STM32F1)
return (DMA2_Channel4_5_IRQn);
#else
return ((IRQn_Type)((int)DMA2_Channel6_IRQn + stream));
#endif
}
#endif
#endif
return -1;
}
/**
* @brief Disable the interrupt of a given stream
*
* @param[in] stream physical DMA stream
*/
static inline void dma_isr_disable(int stream)
{
NVIC_DisableIRQ(dma_get_irqn(stream));
}
/**
* @brief Clear the interrupt of a given stream
*
* @param[in] stream physical DMA stream
*/
static inline void dma_isr_clear(int stream)
{
NVIC_ClearPendingIRQ(dma_get_irqn(stream));
}
/**
* @brief Enable the interrupt of a given stream
*
* @param[in] stream physical DMA stream
*/
static inline void dma_isr_enable(int stream)
{
NVIC_EnableIRQ(dma_get_irqn(stream));
}
static inline uint32_t dma_all_flags(dma_t dma)
{
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
switch (dma_config[dma].stream & 0x3) {
case 0: /* 0 and 4 */
return (DMA_STREAM_IT_MASK);
case 1: /* 1 and 5 */
return (DMA_STREAM_IT_MASK << 6);
case 2: /* 2 and 6 */
return (DMA_STREAM_IT_MASK << 16);
case 3: /* 3 and 7 */
return (DMA_STREAM_IT_MASK << 22);
default:
return 0;
}
#else
return DMA_STREAM_IT_MASK << ((dma_config[dma].stream & 0x7) * 4);
#endif
}
static void dma_clear_all_flags(dma_t dma)
{
DMA_TypeDef *dma_dev = dma_base(dma_config[dma].stream);
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
/* Clear all flags */
if (dma_hl(dma_config[dma].stream) == 0) {
dma_dev->LIFCR = dma_all_flags(dma);
}
else {
dma_dev->HIFCR = dma_all_flags(dma);
}
#else
dma_dev->IFCR = dma_all_flags(dma);
#endif
}
static void dma_poweron(int stream)
{
if (stream < 8) {
periph_clk_en(CLOCK, RCC_MASK_DMA1);
}
#if defined(DMA2)
else {
periph_clk_en(CLOCK, RCC_MASK_DMA2);
}
#endif
}
void dma_init(void)
{
for (unsigned i = 0; i < DMA_NUMOF; i++) {
mutex_init(&dma_ctx[i].conf_lock);
mutex_init(&dma_ctx[i].sync_lock);
mutex_lock(&dma_ctx[i].sync_lock);
int stream_n = dma_config[i].stream;
dma_poweron(stream_n);
dma_isr_enable(stream_n);
dma_ctx[i].stream = dma_stream(stream_n);
}
}
int dma_transfer(dma_t dma, int chan, const volatile void *src, volatile void *dst, size_t len,
dma_mode_t mode, uint8_t flags)
{
int ret = dma_configure(dma, chan, src, dst, len, mode, flags);
if (ret != 0) {
return ret;
}
dma_start(dma);
dma_wait(dma);
dma_stop(dma);
return len;
}
void dma_acquire(dma_t dma)
{
assert(dma < DMA_NUMOF);
mutex_lock(&dma_ctx[dma].conf_lock);
2020-05-18 10:42:05 +02:00
dma_clear_all_flags(dma);
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
STM32_DMA_Stream_Type *stream = dma_ctx[dma].stream;
stream->FCR = 0;
#endif
#ifdef STM32_PM_STOP
/* block STOP mode */
pm_block(STM32_PM_STOP);
#endif
}
void dma_release(dma_t dma)
{
assert(dma < DMA_NUMOF);
#ifdef STM32_PM_STOP
/* unblock STOP mode */
pm_unblock(STM32_PM_STOP);
#endif
mutex_unlock(&dma_ctx[dma].conf_lock);
}
void dma_setup(dma_t dma, int chan, void *periph_addr, dma_mode_t mode,
uint8_t width, bool inc_periph)
{
STM32_DMA_Stream_Type *stream = dma_ctx[dma].stream;
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
/* Set channel, data width, inc and mode */
uint32_t cr_settings = (chan & 0xF) << DMA_SxCR_CHSEL_Pos |
(width << DMA_SxCR_MSIZE_Pos) |
(width << DMA_SxCR_PSIZE_Pos) |
(inc_periph << DMA_SxCR_PINC_Pos) |
(mode & 3) << DMA_SxCR_DIR_Pos |
DMA_SxCR_TCIE |
DMA_SxCR_TEIE;
/* Configure FIFO */
stream->CONTROL_REG = cr_settings;
#else
#if defined(DMA_CSELR_C1S) || defined(DMA1_CSELR_DEFAULT)
int stream_n = dma_config[dma].stream;
dma_req(stream_n)->CSELR &= ~((0xF) << ((stream_n & 0x7) << 2));
dma_req(stream_n)->CSELR |= (chan & 0xF) << ((stream_n & 0x7) << 2);
#else
(void)chan;
#endif
uint32_t ctr_reg = (width << DMA_CCR_MSIZE_Pos) |
(width << DMA_CCR_PSIZE_Pos) |
(inc_periph << DMA_CCR_PINC_Pos) |
(mode & 1) << DMA_CCR_DIR_Pos |
((mode & 2) >> 1) << DMA_CCR_MEM2MEM_Pos |
DMA_CCR_TCIE |
DMA_CCR_TEIE;
stream->CONTROL_REG = ctr_reg;
#endif
stream->PERIPH_ADDR = (uint32_t)periph_addr;
}
void dma_prepare(dma_t dma, void *mem, size_t len, bool incr_mem)
{
STM32_DMA_Stream_Type *stream = dma_ctx[dma].stream;
uint32_t ctr_reg = stream->CONTROL_REG;
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
stream->CONTROL_REG = (ctr_reg & ~(DMA_SxCR_MINC)) |
(incr_mem << DMA_SxCR_MINC_Pos);
#else
stream->CONTROL_REG = (ctr_reg & ~(DMA_CCR_MINC)) |
(incr_mem << DMA_CCR_MINC_Pos);
#endif
stream->MEM_ADDR = (uint32_t)mem;
/* Set length */
stream->NDTR_REG = len;
dma_ctx[dma].len = len;
}
int dma_configure(dma_t dma, int chan, const volatile void *src, volatile void *dst, size_t len,
dma_mode_t mode, uint8_t flags)
{
assert(src != NULL);
assert(dst != NULL);
bool inc_periph;
bool inc_mem;
void *periph_addr;
void *mem_addr;
switch (mode) {
case DMA_MEM_TO_MEM:
case DMA_PERIPH_TO_MEM:
periph_addr = (void*)src;
mem_addr = (void*)dst;
inc_periph = (flags & DMA_INC_SRC_ADDR);
inc_mem = (flags & DMA_INC_DST_ADDR);
break;
case DMA_MEM_TO_PERIPH:
periph_addr = (void*)dst;
/* This discards the const specifier which should be fine as the DMA
* stream promises not to write to this location */
mem_addr = (void*)src;
inc_periph = (flags & DMA_INC_DST_ADDR);
inc_mem = (flags & DMA_INC_SRC_ADDR);
break;
default:
return -1;
}
uint32_t width = (flags & DMA_DATA_WIDTH_MASK) >> DMA_DATA_WIDTH_SHIFT;
dma_setup(dma, chan, periph_addr, mode, width, inc_periph);
dma_prepare(dma, mem_addr, len, inc_mem);
return 0;
}
void dma_start(dma_t dma)
{
STM32_DMA_Stream_Type *stream = dma_ctx[dma].stream;
stream->CONTROL_REG |= DMA_EN;
}
uint16_t dma_suspend(dma_t dma)
{
assert(dma < DMA_NUMOF);
int stream_n = dma_config[dma].stream;
STM32_DMA_Stream_Type *stream = dma_ctx[dma].stream;
uint16_t left = 0;
if ((stream->CONTROL_REG & DMA_EN) == DMA_EN) {
dma_isr_disable(stream_n);
stream->CONTROL_REG &= ~(uint32_t)DMA_EN;
while ((stream->CONTROL_REG & DMA_EN) == DMA_EN) {}
dma_clear_all_flags(dma);
left = stream->NDTR_REG;
dma_isr_clear(stream_n);
}
return left;
}
void dma_resume(dma_t dma, uint16_t remaining)
{
assert(dma < DMA_NUMOF);
int stream_n = dma_config[dma].stream;
STM32_DMA_Stream_Type *stream = dma_ctx[dma].stream;
if (remaining > 0) {
dma_isr_enable(stream_n);
stream->NDTR_REG = remaining;
stream->MEM_ADDR += dma_ctx[dma].len - remaining;
dma_ctx[dma].len = remaining;
stream->CONTROL_REG |= DMA_EN;
}
}
void dma_stop(dma_t dma)
{
STM32_DMA_Stream_Type *stream = dma_stream(dma_config[dma].stream);
stream->CONTROL_REG &= ~(uint32_t)DMA_EN;
}
void dma_wait(dma_t dma)
{
mutex_lock(&dma_ctx[dma].sync_lock);
}
void dma_isr_handler(dma_t dma)
{
dma_clear_all_flags(dma);
mutex_unlock(&dma_ctx[dma].sync_lock);
cortexm_isr_end();
}
#ifdef DMA_0_ISR
void DMA_0_ISR(void)
{
dma_isr_handler(0);
}
#endif
#ifdef DMA_1_ISR
void DMA_1_ISR(void)
{
dma_isr_handler(1);
}
#endif
#ifdef DMA_2_ISR
void DMA_2_ISR(void)
{
dma_isr_handler(2);
}
#endif
#ifdef DMA_3_ISR
void DMA_3_ISR(void)
{
dma_isr_handler(3);
}
#endif
#ifdef DMA_4_ISR
void DMA_4_ISR(void)
{
dma_isr_handler(4);
}
#endif
#ifdef DMA_5_ISR
void DMA_5_ISR(void)
{
dma_isr_handler(5);
}
#endif
#ifdef DMA_6_ISR
void DMA_6_ISR(void)
{
dma_isr_handler(6);
}
#endif
#ifdef DMA_7_ISR
void DMA_7_ISR(void)
{
dma_isr_handler(7);
}
#endif
#ifdef DMA_8_ISR
void DMA_8_ISR(void)
{
dma_isr_handler(8);
}
#endif
#ifdef DMA_9_ISR
void DMA_9_ISR(void)
{
dma_isr_handler(9);
}
#endif
#if defined(DMA_SHARED_ISR_0) || defined(DMA_SHARED_ISR_1)
static int dma_is_isr(dma_t dma)
{
DMA_TypeDef *dma_dev = dma_base(dma_config[dma].stream);
#if CPU_FAM_STM32F2 || CPU_FAM_STM32F4 || CPU_FAM_STM32F7
/* Clear all flags */
if (dma_hl(dma_config[dma].stream) == 0) {
return dma_dev->LISR & dma_all_flags(dma);
}
else {
return dma_dev->HISR & dma_all_flags(dma);
}
#else
return dma_dev->ISR & dma_all_flags(dma);
#endif
}
static void shared_isr(uint8_t *streams, size_t nb)
{
for (size_t i = 0; i < nb; i++) {
dma_t dma = streams[i];
if (dma_is_isr(dma)) {
dma_clear_all_flags(dma);
mutex_unlock(&dma_ctx[dma].sync_lock);
}
}
cortexm_isr_end();
}
#endif
#ifdef DMA_SHARED_ISR_0
void DMA_SHARED_ISR_0(void)
{
uint8_t streams[] = DMA_SHARED_ISR_0_STREAMS;
shared_isr(streams, ARRAY_SIZE(streams));
}
#endif
#ifdef DMA_SHARED_ISR_1
void DMA_SHARED_ISR_1(void)
{
uint8_t streams[] = DMA_SHARED_ISR_1_STREAMS;
shared_isr(streams, ARRAY_SIZE(streams));
}
#endif