mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-15 17:52:45 +01:00
28 lines
821 B
Python
28 lines
821 B
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import joblib
|
||
|
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.ensemble import RandomForestClassifier
|
||
|
from sklearn import metrics, datasets
|
||
|
|
||
|
rnd = 42
|
||
|
digits = datasets.load_digits()
|
||
|
Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target, random_state=rnd)
|
||
|
|
||
|
print('Loading digits dataset. 8x8=64 features')
|
||
|
|
||
|
# 0.95+ with n_estimators=10, max_depth=10
|
||
|
trees = 10
|
||
|
max_depth = 10
|
||
|
print('Training {} trees with max_depth {}'.format(trees, max_depth))
|
||
|
model = RandomForestClassifier(n_estimators=trees, max_depth=max_depth, random_state=rnd)
|
||
|
model.fit(Xtrain, ytrain)
|
||
|
|
||
|
# Predict
|
||
|
ypred = model.predict(Xtest)
|
||
|
print('Accuracy on validation set {:.2f}%'.format(metrics.accuracy_score(ypred, ytest)*100))
|
||
|
|
||
|
# Store the model in a binary file
|
||
|
joblib.dump(model, "model")
|